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FINDIN A X4JORMT AM=N N VOTES
SOLUTION 70 PROBLEM 8I-5 (OURNAL OF ALOOR MS, YUD 1Pl)
MICHAL . FISCEU AND STEVM L. SALZBG (TALE MUNITSITY)

1. The Problem

The problem is as follows: given 'a list of n numbers, representing the

'votes' of a processors on the result of some computation, we wish to decide

if there is a majority vote and what that vote is. By majority vote we mean

that more than half of the processors agree on the result of the computation.

With how many comparisons among our n numbers can we solve this problem?" We

present an algorithm followed by a proof of its optimality.

2. An Algorithm (Steven L. Salzberg)

The following algorithm gives the answer in at most (o~n/23 - 2)

comparisons. Restate the problem as a balls. each of which is some color, and

we want to find one ball representative of the majority color. if such a

* majority exists.

*Observation

Suppose we arrange the balls so that no two adjacent balls are the same

color. Then at most half (rounded up) of the balls on the list are the same

color.

Algoritbm

Phase 1: Take the balls one at a time and place them either on a list or in a

*bucket.M  If the current ball is NOT the same color as the last ball

on the list, then add the current ball to the list, and then, if the

bucket is not empty, remove one ball from the bucket and place it

also on the list. If it IS the same, place it in the bucket.

Phase 2: Use T for all comparisons in this phase, where T Is the last ball on
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the list at the end of Phase 1. Repeatedly compare the current last

ball on the list against T. If the comparison is BQUAL, throw the

last two balls on the list away, unless only one ball remains on the

list, in which oase put it in the bucket instead. If the comparison

is UMUAL, throw it and one ball from the bucket away. Continue in

this way until the list is empty. During this process, if a ball is

ever needed from the bucket and none is available, then halt and

announce that no majority exists. When done, if the bucket is

non-empty, announce T as representative of a majority. Otherwise,

announce that no majority exists.

(Note: For efficiency, the algorithm can immediately halt in Phase 2

if n is even and the bucket ever becomes empty, since no majority

would then be possible. However, this does not improve the

worst-case behavior.)

Theores 1: The algorithm above solves the majority balls problem
and never uses sore that r3n/21 - 2 comparisons.

Proof:

At any stage during Phase 1, all the balls in the bucket (if any)
are the same color as the last ball on the list. This property is
guaranteed because whenever we add something to the list, we take
something out of the bucket (without any comparison) and add it to the
list as well. At the end of this phase, by the initial mobservationw,
if there is a majority color, it must be the same color as T.

Phase 2 checks whether indeed a majority exists. Whenever a pair
of balls is discarded, one is the same color as T and the other is
different. lence, T is a majority element iff a majority of the balls
remaining at the end share its color. There are two cases. If Phase
2 terminates prematurely because a ball Is needed from the bucket and
the bucket is empty, then at most half the balls remaining on the list
have color T; hence there Is no majority. If the phase runs to
completion, then all the remaining balls (if any) are in the bucket
and have the same color as T. Hence, T represents a majority iff the
bucket is non-empty.

omdnhuit

In Phase 1, the algorithm does (n - 1) comparisons. In Phase 2,
it makes one comparison for each pair of balls discarded after the
first. In addition, it may make one comparison at the end which
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results in a ball being. placed in the bucket instead of a pair being
discarded. A straightforward case analysis shows the maximm number
of compares for Phase 2 is ra/21 - 1. Altogether then, the algorithm
uses at most rsn/21 - 2 comparisons.

3. Optimality (Michael Y. Fischer)

We construct an adversary which forces at least 2e*r/21 - 2 unequal

comparisons and at least Ln/2J equal comparisons for a total of r3a/21 - 2.

The adversary maintains a partition of elements into two sets, the aga

and the outfield. The arena contains a number of connected components of two

types: 'bars* and *flocks*. A bar is a pair of elements with one unequal

comparison between them. A fock is a non-empty set of elements connected by

equal comparisons. Thus, a flock of k elements has at least k-i equal

comparisons among its members. Initially, each element is in a singleton

flock.

At any stale in the algorithm, let B (reap. F) denote the number of bars

(flocks) in the arena. Let t be the number of elements in the outfield, and

let f be the total number of elements in all the flocks. Finally, lot a -

Ln/2J + 1 be the *majority number'.

The adversary answers a question z:y of the algorithm as follows:

1. If x or y is in the outfield, the answer is 'unequal'.

2. If z (reap. y) is an element of a bar, the answer is 'unequal', and
x (reap. y) is moved to the outfield. The remaining element of the
bar becomes a new singleton flock.

3. If x and y are both members of the same flock, the answer is
equaln.

4. If x and y are in separate flocks, then there are two cases
depending on d - 3 + f.

Case 1) d > m: Then it will follow that both x and y are in
singleton flocks, so the answer is 'unequal', and ({•y) becomes a
now bar.

Case 2) d - a: Then the answer is 'equal', and the flocks
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containing z and y are merged together.

Note: Case 1 decreases 4 by 1 and Case 2 leaves it unchanged.

Claim 1: d m. Moreover, if d a a, then all flocks are
singletons.

Claim 2: At any time, the following two colorings are both
consistent with all of the answers given by the adversary:

1. All elements are given distinct colors except that elements
within the same flock are colored the same.

2. A single target color is assigned to all of the elements in all
of the flocks and the same color is assigned to one element of
each bar. The remaining elements each receive a distinct
color.

Claim 3: No correct algorithm can stop until the arena contains
only a single component, which will be a flock of size m.

Proof: Assume the arena contains two or more components. Then n
2, so also m 2 2. By the definition of d, each flock is strictly

smaller than d. Every flock is also strictly smaller than a, for
either d - a, or every flock is a singleton by Claim 1. Thus, the
first coloring of Claim 2 fails to have a majority element. On the
other hand, since d 2 m, the target color of the second coloring of
Claim 2 is a majority. Since both colorings are possible, no correct
algorithm can stop at this time. Hence, at termination there can be
only one component, which must be a flock of size d - a (by definition
of d and Claim 1).

Claim 4: The number of unequal comparisons made by the algorithm
at any stage is at least 2et + B, and the number of equal comparisons
is at least f - F.

4 Proof: Easy induction.

Theorem 2: Consider any algorithm whieh solves the majority
balls problem. Then there is an input on which it makes at least
20(n - a) a 2*rn/21 - 2 unequal comparisons and at least a - 1 - La/2J

equal comparisons. Thus, the total number of comparisons is at least
ran/21 - 2.

Proof: By Claim 3, the arena contains a single component at
termination which is a flock of exactly m elements. Hence, t - n - s,
B - 0, f a , and F 1 I. The theorem follows immediately from Claim
4.
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